Human immunodeficiency virus-restricted replication in astrocytes and the ability of gamma interferon to modulate this restriction are regulated by a downstream effector of the Wnt signaling pathway.

نویسندگان

  • Deborah Carroll-Anzinger
  • Anvita Kumar
  • Vyacheslav Adarichev
  • Fatah Kashanchi
  • Lena Al-Harthi
چکیده

Astrocyte dysregulation correlates with the severity and the rate of human immunodeficiency virus (HIV)-associated dementia (HAD) progression, highlighting a pivotal role for astrocytes in HIV neuropathogenesis. Yet, astrocytes limit HIV, indicating that they possess an intrinsic molecular mechanism to restrict HIV replication. We previously established that this restriction can be partly overcome by priming astrocytes with gamma interferon (IFN-gamma), which is elevated in the cerebral spinal fluid of HAD patients. We evaluated the mechanism of restrictive HIV replication in astrocytes and how IFN-gamma priming modulates this restriction. We demonstrate that the downstream effector of Wnt signaling, T-cell factor 4 (TCF-4), is part of a transcriptional complex that is immunoprecipitated with HIV TAR-containing region in untreated astrocytes but not in IFN-gamma-treated cells. Blocking TCF-4 activity with a dominant-negative mutant enhanced HIV replication by threefold in both the astrocytoma cell line U87MG and primary fetal astrocytes. Using a TCF-4 reporter plasmid, we directly demonstrate that Wnt signaling is active in human astrocytes and is markedly reduced by IFN-gamma treatment. Collectively, these data implicate TCF-4 in repressing HIV replication and the ability of IFN-gamma to regulate this restriction by inhibiting TCF-4. Given that TCF-4 is the downstream effector of Wnt signaling, harnessing Wnt signaling as an intrinsic molecular mechanism to limit HIV replication may emerge as a powerful tool to regulate HIV replication within and outside of the brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Wnt Signaling Pathway on the Expression of TGFβ 1 and TGFβ 2 in Cultured Rat Cortical Astrocytes

Introduction: Astrocytes, the most abundant glia in the central nervous system, modulate neuronal survival and function. Astrocytic functions are mediated by synthesis and secretion of wide ranges of polypeptides through mechanism (s) poorly understood. Among these, TGFβs are synthesized and released by the astrocytes. In this study, the involvement of Wnt signaling pathway on the synthesi...

متن کامل

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

Therapeutic potential of Paclitaxel against COVID-19

The coronavirus disease-2019(COVID-19) was reported in Wuhan, China, in late December 2019 and soon became the most serious global health challenge due to high rate of human-to-human transmission. The severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), is a single-stranded RNA virus and belongs to the large Coronaviridae family. Paclitaxel, an antineoplastic drug extracted from the Tax...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Activation of Wnt signaling reduces high-glucose mediated damages on skin fibroblast cells

Objective(s): High-glucose (HG) stress, a mimic of diabetes mellitus (DM) in culture cells, alters expression of a large number of genes including Wnt and NF-κB signaling-related genes; however, the role of Wnt signaling during HG-mediated fibroblast damage and the relationship between Wnt and NF-κB signaling have not been understood. In this study, we aimed to investigate the ffects of Wnt sig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 81 11  شماره 

صفحات  -

تاریخ انتشار 2007